Automated complex of multidisciplinary neural network support of medical decisions in the treatment of coronary heart disease
https://doi.org/10.25881/18110193_2023_3_58
Abstract
The article covers methods and procedures for developing a neural network decision support system when choosing the tactics of surgical intervention on coronary heart vessels. The system is designed to advise a wide range of practicing cardiologists and cardiac surgeons when deciding on the tactics of surgical intervention in patients with conditions associated with compromised coronary vessels. Based on a mathematical model taking into account a number of factors and the outcomes of previously performed surgeries, the neural network system offers a choice between aorto-coronary bypass surgery and percutaneous coronary intervention. The decision determined by the system can serve as an additional argument for the final adoption of a collegial decision in complex clinical cases. Right decision affects the patient’s recovery time after surgery, the quality of life after recovery, and the ability to continue working after treatment. The neural network decision support system in the field of cardiac surgery is designed as a standard application for a personal computer with specific technical characteristics that allow processing a large amount of data. Access to the system can be obtained by any cardiologist or cardiac surgeon registered in the system and validated. The developed complex is designed to provide healthcare institutions with a digital product and domestic service based on a new technological structure.
Keywords
About the Authors
D. M. ZhuravlevRussian Federation
DSc
Moscow
F. Yu. Kopylov
Russian Federation
DSc
Moscow
V. K. Chaadaev
Russian Federation
DSc
Moscow
S. V. Ardatov
Russian Federation
PhD
Samara
K. V. Chaadaev
Russian Federation
Moscow
References
1. Gogayeva O. Comparison of the EuroSCORE I, EuroSCORE II and STS Scales in Cardiac Surgery of High-Risk Patients with Complicated Forms of CAD. Ukrainian journal of cardiovascular surgery. 2020; 3(40): 15-21.
2. Singh N., Gimpel D., Parkinson G. et al. Assessment of the EuroSCORE II in a New Zealand Tertiary Centre. Heart, Lung and Circulation. 2019; 28(11): 1670-1676. doi: 10.1016/j.hlc.2018.09.004.
3. Hatamnejad MR, Heydari AA, Salimi M, et al. The utility of SYNTAX score predictability by electrocardiogram parameters in patients with unstable angina. BMC Cardiovasc Disord. 2022; 22(8). doi: 10.1186/s12872-022-02455-6.
4. Minamisawa M, Miura T, Motoki H, et al. Prediction of 1-year clinical outcomes using the SYNTAX score in patients with prior heart failure undergoing percutaneous coronary intervention: sub-analysis of the SHINANO registry. Heart Vessels. 2017; 32(4): 399-407.
5. Modolo R, Collet C, Onuma Y, Serruys PW. SYNTAX II and SYNTAX III trials: what is the take home message for surgeons? Annals of Cardiothoracic Surgery. 2018; (4): 470-483. doi: 10.21037/acs.2018.07.02.
6. Nibber A, Ziada KM, Whayne TF. Predictive Value of the Logistic Clinical SYNTAX Score. Angiology. 2015; 66(8): 711-713. doi: 10.1177/0003319714562244.
7. Samorodskaya IV, Chernyavskaya TK, Kakorina EP, Semenov VYu. Ishemicheskie bolezni serdcza: analiz medicinskix svidetel`stv o smerti. Rossijskij kardiologicheskij zhurnal. 2022; 27(1): 22-28. (In Russ.)
8. Chernyavskaya TK, Glezer MG. Klinicheskaya kharakteristika i lecheniye ambulatornykh patsiyentov s khronicheskoy serdechnoy nedostatochnost’yu v Moskovskoy oblasti. Al’manakh klinicheskoy meditsiny. 2021; 49(2): 125-131. (In Russ.)
9. Romiti S., Vinciguerra M., Saade W., Anso Cortajarena I., Greco E. Artificial Intelligence (AI) and Cardiovascular Diseases: an Unexpected Alliance. Cardiology Research and Practice. 2020; 2020: 1-8.
10. Zghyer F, Yadav S, Elshazly MB. Artificial Intelligence and Machine Learning. Precision Medicine in Cardiovascular Disease Prevention. 2021; 18: 133-148.
11. Sozykin AV. Obzor metodov obucheniya glubokikh neyronnykh setey. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Vychislitel’naya matematika i informatika. 2017; 6(3): 28-59. (In Russ.)
12. Shaker M, Tantawi M, Shedeed A, Tolba F. Generalization of convolutional neural networks for ECG classification using generative adversarial networks. IEEE Access. 2020; 8: 35592-35605.
13. Golubev AS, Zvyagin MYU, Prokoshev VG, Rozhkov MM. Osobennosti raspoznavaniya metodom blizhayshego elementa v algoritmakh vychisleniya otsenok. Prikladnaya informatika. 2013; 1(43): 87-94. (In Russ.)
14. Zhuravlev YUI, Nazarenko GI, Ryazanov VV, Kleymenova YeB. Novyy metod analiza riska razvitiya ishemicheskoy bolezni serdtsa s ispol’zovaniyem genomnykh i komp’yuternykh tekhnologiy. Kardiologiya. 2011; 51(2): 19-25. (In Russ.)
15. Son C, Kim Y, Kim H, Park H, Kim M. Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches. Journal of Biomedical Informatics. 2012; 45: 999-1008.
16. Vysotskaya EV, Belovod AN, Kirichenko AN. Renewal of the skipped values of parameters in the tables of biochemical analyses of patients with psoriasis. Herald of the National Technical University «KhPI». Subject issue: Information Science and Modeling. 2010; 21: 38-45. (In Russ.)
17. Lipton ZC, Kale D, Wetzel,R. Directly modeling missing data in sequences with rnns: Improved classification of clinical time series. In Machine Learning for Healthcare Conference. 2016; 253-270.
18. Shafronenko AYU, Volkova VV, Bodyanskiy YeV. Adaptivnaya klasterizatsiya dannykh s propushchennymi znacheniyami. Radioelektronika, informatika, upravleniye. 2011; 2(25): 115-119. (In Russ.)
19. Astaxova IF, Kiseleva EI. Intellektual`naya podderzhka prinyatiya vrachebny`x reshenij. Sovremenny`e informacionny`e texnologii i IT-obrazovanie. 2020; 16(3): 664-672. (In Russ.)
20. Sharma M, Savage C, Nair M, Larsson I, Svedberg P, Nygren JM. Artificial Intelligence Applications in Health Care Practice: Scoping Review. J Med Internet Res. 2022; 24(10): e40238.
Review
For citations:
Zhuravlev D.M., Kopylov F.Yu., Chaadaev V.K., Ardatov S.V., Chaadaev K.V. Automated complex of multidisciplinary neural network support of medical decisions in the treatment of coronary heart disease. Medical Doctor and Information Technologies. 2023;(3):58-71. (In Russ.) https://doi.org/10.25881/18110193_2023_3_58