Knowledge base for the development of an intelligent assistant to a phthisiatrician for managing treatment process of patients with pulmonary tuberculosis
https://doi.org/10.25881/18110193_2023_2_58
Abstract
Successful efforts made to reduce incidence of tuberculosis have not translated into improved cure rates which remain low. This is largely due to long time for diagnosis, formation of drug resistance of Mycobacterium tuberculosis during treatment, a large set of anti-TB drugs and adverse events during their use. Therapy regimens change and replace each other rapidly, clinical guidelines update more and more often.
This along with growing number of comorbidities of a patient, requiring multicomponent pharmacotherapy, makes the development of an intellectual assistant for a TB doctor highly anticipated. Such an assistant would help a doctor processing a large amount of information about the patient, drugs he takes. It would also offer an informed decision in administering chemotherapy regimen and it’s timely changes in case of detection of drug resistance of Mycobacterium tuberculosis.
About the Authors
V. V. GribovaRussian Federation
Gribova V.V., Corresponding Member of the RAS, DSc, Deputy Director for Research
Vladivostok
E. A. Borodulina
Russian Federation
BORODULINA E.A., DSc, Prof
Samara
D. B. Okun
Russian Federation
OKUN D.B., PhD, IACP
Vladivostok
E. P. Eremenko
Russian Federation
EREMENKO E.P., PhD,
Samara
R. I. Kovalev
Russian Federation
KOVALEV, R.I.
Vladivostok
B. E. Borodulin
Russian Federation
BORODULIN B.E., DSc, Prof.
Samara
E. A. Amosova
Russian Federation
AMOSOVA E.A., PhD
Samara
References
1. Zaharov A, Romanov V, Ergeshov A. Ways to improve the effectiveness of treatment newly identified patients destructive pulmonary tuberculosis. Vrach. 2022; 33(2): 5-11. (In Russ.) doi: 10.29296/25877305-2022-02-01.
2. Omarova AR, Ibragimova SI. Multidrug resistant lung tuberculosis (literature review). Teoriya i praktika sovremennoj nauki. 2018; 2(32): 453-456. (In Russ.)
3. Komissarova OG, Chumakova ES, Abdullaev RYu, Odinec VS. Efficacy of treatment of newly detected patients with MDR tuberculosis in early detection of drug resistance of M. tuberculosis to rifampicin. Uralskii medicinskii jurnal. 2018; 8(163): 47-52. (In Russ.) doi: 10.25694/URMJ.2018.05.50.
4. Elgali AI, Aseev AV, Ryasenskii DS, Grishkina NA. Long-term outcomes of treatment in patients with drug-resistant pulmonary tuberculosis and non-efficiency of previous therapy. Epidemiology and Infectious Diseases. 2019; 24(2): 88-91. (In Russ.) doi: 10.18821/1560-9529-2019-24-2-88-91.
5. Savinceva EV, Alieva AR, Ivanova LM, Kozlova TP, Bitneva AM. Medico-social portrait of patients with pulmonary tuberculosis with drug resistance of MBT. Forum molodyh uchenyh. 2019; 4(32): 922-928. (In Russ.)
6. Savinceva EV, Karamova RR, Vostrecova IA, Kozlova TP, Bitneva AM. Analysis of statistical data of concomitant pathology in tuberculosis. Problemy nauki. 2019; 3(39): 92-93. (In Russ.)
7. Dyakov AV. The effectiveness of treatment of tuberculosis patients with a broad drug-resistant pathogen living in rural areas. Vestnik Centralnogo nauchno issledovatelskogo instituta tuberkuleza. 2021; S1: 161-162. (In Russ.) doi: 10.7868/S2587667821050721.
8. Lepshina SM, Ataev OV, Serdyuk OV, Yurovskaya EI. The effectiveness of treatment of patients with multi-resistant tuberculosis, depending on the timing of detection of tuberculosis. Vestnik gigieni i epidemiologii. 2019; 23(4): 360-363. (In Russ.)
9. Gribova VV, Moskalenko FM, Timchenko VA, et al. The iacpaas platform for developing systems based on ontologies: a decade of use. Artificial intelligence and decision-making. 2022; 4: 55-65. (In Russ.) doi: 10.14357/20718594220406.
10. Baza dannih «Baza medicinskoi terminologii i nablyudenii» / av.sv. 2019621179 Pravoobladatel _ IAPU DVO RAN avtori Gribova VV, Petryaeva MV, Okun DB, Moskalenko FM, Shalfeeva EA. № 2019620020; zayav. 09.01.2019; opubl. 04.07.2019. Oficialnii byulleten «Programmi dlya EVM. Bazi dannih. Topologii integralnih mikroshem». Moskva FIPS 2019. Byul. №7 (publ. 04.07.2019). ISSN 23137487. (In Russ.)
11. Gribova VV, Okun DB. Ontologies for the formation of knowledge bases about disease treatment in medical intelligent systems. Computer Science and management system. 2018; 3(57): 71-80. (In Russ.) doi: 10.22250/isu.2018.57.71-80.
12. Gribova V, Kovalev R, Okun D. A Specialized Shell for Intelligent Systems of Prescribing Medication. Scientific and Technical Information Processing. 2021; 48(5): 1-11. doi: 10.3103/S0147688221050038.
13. Klinicheskie rekomendacii. Tuberkulez u vzroslih. Utverjdeni Ministerstvom zdravoohraneniya Rossiiskoi Federacii. 2022: 45-48. (In Russ.)
14. Gribova VV, Kovalev RI, Okun DB. Spezialized Shell for Intelligent Systems of Prescribing Medication. Artificial Intelligence and Decision Making. 2020; 4: 66-79. (In Russ). doi: 10.14357/20718594200407.
15. Gaida AI, Abramchenko AV, Romanova MI., et al. Yustification of chemotherapy duration in patients with multiple and pre-extensive drug resistant tuberculosis in the Russian Federation. Tuberculosis and lung diseases. 2022; 100(12): 44-53 (In Russ.)
Review
For citations:
Gribova V.V., Borodulina E.A., Okun D.B., Eremenko E.P., Kovalev R.I., Borodulin B.E., Amosova E.A. Knowledge base for the development of an intelligent assistant to a phthisiatrician for managing treatment process of patients with pulmonary tuberculosis. Medical Doctor and Information Technologies. 2023;(2):58-69. (In Russ.) https://doi.org/10.25881/18110193_2023_2_58