Preview

Medical Doctor and Information Technologies

Advanced search

Analytical review of technologies for simulation of breast cancer screening scenario

https://doi.org/10.25881/18110193_2022_2_22

Abstract

Background. Long-term outcomes of screening programs are challenging to evaluate in randomized clinical trials. The role of predictive modeling is becoming increasingly popular in oncology. Modeling the interventions consequences in oncology is based, among other things, on the use of toolkits, denoted by the term «mathematical oncology»

Aim. To study approaches to modeling screening scenarios for breast cancer, aimed at developing tools to support medical decision-making in the healthcare system, including the development of clinical guidelines for cancer screening.

Methods. The search for relevant studies was performed through PubMed (Medline) and direct google-search. Key words for the search included breast cancer», «screening», «modeling», «oncology informatics», «cancer care», «big data» etc.

Results. We analyzed several breast cancer screening models. Results of the modeling included broad spectrum of clinically and economically parameters relevant for the screening scenarios characterization. The basic concepts of constructing valid models, including the analysis and simulation of individual histories of the tumor progression course (both natural and in interventional settings), were studied.

Conclusion. Simulation modeling allowed linking new advances in cancer research with the most effective strategies for implementing them into clinical practice in order to maximize patient benefit and reduce economic burden at the population level.

About the Authors

A. A. Zavyalov
Research Institute for Healthcare Organization and Medical Management of Moscow Health Department,
Russian Federation

Dr. Sci. (Medicine), professor

Moscow



D. A. Andreev
Research Institute for Healthcare Organization and Medical Management of Moscow Health Department,
Russian Federation

Dr. Sci. (Medicine)

Moscow



References

1. Цифровая платформа «Московская медицина. Мероприятия». Андреев Д.А. Вебинар «Математические подходы к анализу медицинской деятельности по профилю «онкология». [Electronic resource. 2022. URL: https://events.niioz.ru/event/10766 (accessed: 06.04.2022).

2. National Cancer Institute. Cancer Intervention and Surveillance Modeling Network (CISNET) Incubator Program for New Cancer Sites (U01 Clinical Trial Not Allowed) Webinar. [Electronic resource. URL: www.youtube.com/watch?v=TRE4bGwNbEI (accessed: 06.04.2022).

3. Digital science press LLC, Etzioni R. Prostate Cancer Modeling: The CISNET Prostate Group [Electronic resource. URL: https://www.urotoday.com/video-lectures/localized-prostate-cancer/video/1974-prostate-cancer-modeling-the-cisnet-prostate-group-ruth-etzioni.html (accessed: 06.04.2022).

4. American Society of Clinical Oncology. Mathematical Oncology [Electronic resource. URL: https://ascopubs.org/cci/collections/mathematical-oncology (accessed: 06.04.2022).

5. Lee S.J., Li X., Huang H., Zelen M. The Dana-Farber CISNET Model for Breast Cancer Screening Strategies: An Update. Med. Decis. Mak. 2018; 38(1): 44S-53S.

6. van den Broek J.J., van Ravesteyn N.T., Heijnsdijk E.A., de Koning H.J. Simulating the Impact of RiskBased Screening and Treatment on Breast Cancer Outcomes with MISCAN-Fadia. Med. Decis. Making. 2018; 38(1): 54S-65S.

7. Huang X., Li Y., Song J., Berry D.A. A Bayesian Simulation Model for Breast Cancer Screening, Incidence, Treatment, and Mortality. Med. Decis. Mak. an Int. J. Soc. Med. Decis. Mak. 2018; 38(1): 78S-88S.

8. Munoz D.F., Xu C., Plevritis S.K. A Molecular Subtype-Specific Stochastic Simulation Model of US Breast Cancer Incidence, Survival, and Mortality Trends from 1975 to 2010. Med. Decis. Mak. an Int. J. Soc. Med. Decis. Mak. 2018; 38(1): 89S-98S.

9. Alagoz O., Ergun M.A., Cevik M., Sprague B.L., Fryback D.G., Gangnon R.E., et al. The University of Wisconsin Breast Cancer Epidemiology Simulation Model: An Update. Med. Decis. Making. 2018; 38(1): 99S-111S.

10. Trentham-Dietz A., Alagoz O., Chapman C., Huang X., Jayasekera J., van Ravesteyn N.T., et al. Reflecting on 20 years of breast cancer modeling in CISNET: Recommendations for future cancer systems modeling efforts. PLOS Comput. Biol. 2021; 17(6): e1009020.

11. Andreev D.A., Hachanova N.V., Stepanova V.N., Bashlakova E.V., Evdoshenko E.P., Davydovskaya M.V. Standartizaciya modelirovaniya progressirovaniya hronicheskih zabolevanij. Problemy standartizacii v zdravoohranenii. 2017; 9–10: 12-24. (In Russ).

12. National Cancer Institute, Cancer Intervention and Surveillance Modeling Network. CISNET Modeling Approach [Electronic resource. URL: https://cisnet.cancer.gov/modeling/index.html (accessed: 06.04.2022).

13. Trentham-Dietz A., Kerlikowske K., Stout N.K., Miglioretti D.L., Schechter C.B., Ergun M.A., et al. Tailoring Breast Cancer Screening Intervals by Breast Density and Risk for Women Aged 50 Years or Older: Collaborative Modeling of Screening Outcomes. Ann. Intern. Med. 2016; 165(10): 700–712.

14. Mandelblatt J.S., Near A.M., Miglioretti D.L., Munoz D., Sprague B.L., Trentham-Dietz A., et al. Common Model Inputs Used in CISNET Collaborative Breast Cancer Modeling. Med. Decis. Mak. an Int. J. Soc. Med. Decis. Mak. 2018; 38(1): 9S-23S.

15. Plevritis S.K., Munoz D., Kurian A.W., Stout N.K., Alagoz O., Near A.M., et al. Association of Screening and Treatment With Breast Cancer Mortality by Molecular Subtype in US Women, 2000-2012. JAMA. 2018; 319(2): 154–164.

16. van den Broek J.J., Schechter C.B., van Ravesteyn N.T., Janssens A.C.J.W., Wolfson M.C., TrenthamDietz A., et al. Personalizing Breast Cancer Screening Based on Polygenic Risk and Family History. J. Natl. Cancer Inst. 2021; 113(4): 434–442.

17. Henderson T.O., Amsterdam A., Bhatia S., Hudson M.M., Meadows A.T., Neglia J.P., et al. Systematic review: surveillance for breast cancer in women treated with chest radiation for childhood, adolescent, or young adult cancer. Ann. Intern. Med. 2010; 152(7): 444–454.

18. Yeh J.M., Lowry K.P., Schechter C.B., Diller L.R., Alagoz O., Armstrong G.T., et al. Clinical Benefits, Harms, and Cost-Effectiveness of Breast Cancer Screening for Survivors of Childhood Cancer Treated With Chest Radiation : A Comparative Modeling Study. Ann. Intern. Med. 2020; 173(5): 331–341.


Review

For citations:


Zavyalov A.A., Andreev D.A. Analytical review of technologies for simulation of breast cancer screening scenario. Medical Doctor and Information Technologies. 2022;(2):22-33. (In Russ.) https://doi.org/10.25881/18110193_2022_2_22

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1811-0193 (Print)
ISSN 2413-5208 (Online)