Review of methodological approaches to assessing the quality of electronic health records management
https://doi.org/10.25881/18110193_2024_3_6
Abstract
Transition to electronic medical records (EMR) is one of the basic directions of digital transformation of healthcare.
One of the urgent modern problems of EMR management is the quality of data that are accumulated in modern medical information systems. Given the growing role of EMRs as a source of information for medical decision support systems, the introduction of management elements based on primary data, and the development of research in the field of real-world clinical practice data (RWD), there is a growing need for reliable and objective methods to assess the quality of data accumulated in EMRs. In this regard, the development of reliable methods and tools for data quality assessment (DQA) in EMR is an urgent scientific task.
Aim. To study and systematize the approaches, methods and criteria of proposed in the scientific literature.
Materials and Methods. Reviews and original articles on the subject of EMRs DQA were studied. Sources were identified by systematic search in four electronic bibliographic databases: PubMed, Web of Science, Scopus and RSCI.
Results. The paper presents the main approaches and criteria for assessing the quality of EMR data, harmonizes the terms and definitions of DQA, and identifies the key components required to implement an EMRs DQA system.
Conclusion. The generic EMRs DQA criteria formulated in the review can be used for further research and development of DQA tools, including by medical information system developers and health care organizers responsible for the digital transformation of the industry. Also, this work will help eliminate confusion about EMR data quality management and provide the guidance needed to develop effective DQA programs.
About the Authors
A. N. KaftanovRussian Federation
PhD,
Petrozavodsk
A. E. Andreychenko
Russian Federation
PhD
Petrozavodsk
A. V. Gusev
Russian Federation
PhD
Moscow
References
1. Warren LR, Clarke J, Arora S, et al. Improving data sharing between acute hospitals in England: an overview of health record system distribution and retrospective observational analysis of inter-hospital transitions of care. BMJ Open 2019; 9: e031637. doi: 10.1136/bmjopen-2019- 031637.
2. Atasoy H, Greenwood BN, McCullough JS. The Digitization of Patient Care: A Review of the Effects of Electronic Health Records on Health Care Quality and Utilization. Annu Rev Public Health. 2019; 40: 487-500. doi: 10.1146/annurev-publhealth-040218-044206.
3. Häyrinen K, Saranto K, Nykänen P. Definition, structure, content, use and impacts of electronic health records: a review of the research literature. Int J Med Inform. 2008; 77(5): 291-304. doi: 10.1016/j.ijmedinf.2007.09.001.
4. Meystre SM, Lovis C, Bürkle T et al. Clinical Data Reuse or Secondary Use: Current Status and Potential Future Progress. Yearb Med Inform. 2017; 26(1): 38-52. doi: 10.15265/IY-2017-007.
5. Goldstein BA, Navar AM, Pencina MJ, Ioannidis JP. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J Am Med Inform Assoc. 2017; 24(1): 198-208. doi: 10.1093/jamia/ocw042.
6. Topol E. The Topol Review Preparing the Healthcare Workforce to Deliver the Digital Future. 2019: 1-48.
7. Vuokko R, Mäkelä-Bengs P, Hyppönen H, Doupi P. Secondary use of structured patient data: interim results of a systematic review. Stud Health Technol Inform. 2015; 210: 291-5.
8. Collins SA, Bakken S, Vawdrey DK, et al. Clinician preferences for verbal communication compared to EHR documentation in the ICU. Appl Clin Inform. 2011; 2(2): 190-201. doi: 10.4338/ACI-2011-02-RA-0011.
9. Salomon RM, Blackford JU, Rosenbloom ST et al. Openness of patients' reporting with use of electronic records: psychiatric clinicians' views. J Am Med Inform Assoc. 2010; 17(1): 54-60. doi: 10.1197/jamia.M3341.
10. Peivandi S, Ahmadian L, Farokhzadian J, Jahani Y. Evaluation and comparison of errors on nursing notes created by online and offline speech recognition technology and handwritten: an interventional study. BMC Med Inform Decis Mak. 2022; 22(1): 96. doi: 10.1186/s12911-022-01835-4.
11. Colin NV, Cholan RA, Sachdeva B et al. Understanding the Impact of Variations in Measurement Period Reporting for Electronic Clinical Quality Measures. EGEMS (Wash DC). 2018; 6(1): 17. doi: 10.5334/egems.235.
12. Bowman S. Impact of electronic health record systems on information integrity: quality and safety implications. Perspect Health Inf Manag. 2013; 10(Fall): 1c.
13. O'Donnell HC, Kaushal R, Barrón Y, et al. Physicians' attitudes towards copy and pasting in electronic note writing. J Gen Intern Med. 2009; 24(1): 63-8. doi: 10.1007/s11606-008-0843-2.
14. Coleman N, Halas G, Peeler W, et al. From patient care to research: a validation study examining the factors contributing to data quality in a primary care electronic medical record database. BMC Fam Pract. 2015; 16: 11. doi: 10.1186/s12875-015-0223-z.
15. DAMA-DMBOK: Свод знаний по управлению данными. 2-е изд. 2020. Dama International [пер. с англ. Г. Агафонова]. М.: Олимп-Бизнес, 2020. 828 с.: ил. [DAMA-DMBOK: Svod znanij po upravleniyu dannymi. 2-e izd. 2020. Dama International [per. s angl. G. Agafonova]. M.: Olimp-Biznes, 2020. 828 р.: il. (In Russ.)]
16. Ljubicyn VN. Povyshenie kachestva dannyh v kontekste sovremennyh analiticheskih tehnologij. Vestnik JuUrGU. Serija: Komp'juternye tehnologii, upravlenie, radiojelektronika. 2012; 23. (In Russ.)
17. Kilimova AD. Potoki dannyh v legkoj promyshlennosti. Kompetentnost'. 2022; 3. (In Russ.)
18. Afanas'ev AA, Kudinov VA. Ispol'zovanie ontologicheskogo podhoda dlja izvlechenija ozhidanij k kachestvu dannyh korporativnyh hranilishh. Jekonomika. Informatika. 2022; 49(3): 566-574. (In Russ.) doi: 10.52575/2687-0932-2022-49-3-566-574.
19. Elliott RA, Camacho E, Jankovic D, et al. Economic analysis of the prevalence and clinical and economic burden of medication error in England. BMJ Qual Saf. 2021; 30(2): 96-105. doi: 10.1136/bmjqs-2019-010206.
20. Zozus MN, Penning M, Hammond WE. Factors impacting physician use of information charted by others. JAMIA Open. 2019; 2(1): 107-114. doi: 10.1093/jamiaopen/ooy041.
21. Munyisia EN, Reid D, Yu P. Accuracy of outpatient service data for activity-based funding in New South Wales, Australia. Health Inf Manag. 2017; 46(2): 78-86. doi: 10.1177/1833358316678957.
22. Kaplan B. How Should Health Data Be Used? Camb Q Healthc Ethics. 2016; 25(2): 312-29. doi: 10.1017/S0963180115000614.
23. Nouraei SA, Virk JS, Hudovsky A, et al. Accuracy of clinician-clinical coder information handover following acute medical admissions: implication for using administrative datasets in clinical outcomes management. J Public Health (Oxf). 2016; 38(2): 352-62. doi: 10.1093/pubmed/fdv041.
24. Feldman K, Faust L, Wuet X, et al. Beyond volume: The impact of complex healthcare data on the machine learning pipeline Lecture Notes in Computer Science (including subseries Lecture Notes in Arti- ficial Intelligence and Lecture Notes in Bioinformatics). 2017; 10344 LNAI: 150-169.
25. Hanauer DA, Mei Q, Vydiswaran VGV, et al. Complexities, variations, and errors of numbering within clinical notes: the potential impact on information extraction and cohort-identification. BMC Med Inform Decis Mak. 2019; 19(3): 75. doi: 10.1186/s12911-019-0784-1.
26. Batini C, Francalanci C, Cappiello C, Maurino A. Methodologies for data quality assessment and improvement. ACM computing surveys (CSUR). 2009; 41(3): 16.
27. Wang RY. A product perspective on total data quality management. Communications of the ACM. 1998; 41(2): 58-66. doi: 10.1145/269012.269022.
28. Veiga AK, Saraiva AM, Chapman AD, et al. A conceptual framework for quality assessment and management of biodiversity data. PLoS One. 2017; 12(6): e0178731. doi: 10.1371/journal.pone.0178731.
29. WHO, Data Quality Assessment of National and Partner Hiv Treatment and Patient Monitoring Systems. 2018. August: 1-68.
30. Weiskopf NG, Weng C. Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. J Am Med Inform Assoc. 2013; 20(1): 144-51. doi: 10.1136/amiajnl-2011-000681.
31. Feder SL. Data Quality in Electronic Health Records Research: Quality Domains and Assessment Methods. West J Nurs Res. 2018; 40(5): 753-766. doi: 10.1177/0193945916689084.
32. Reimer AP, Milinovich A, Madigan EA. Data quality assessment framework to assess electronic medical record data for use in research. Int J Med Inform. 2016; 90: 40-7. doi: 10.1016/j.ijmedinf.2016.03.006.
33. Kahn MG, Raebel MA, Glanz JM, et al. A pragmatic framework for single-site and multisite data quality assessment in electronic health record-based clinical research. Med Care. 2012; 50(0): S21-9. doi: 10.1097/MLR.0b013e318257dd67.
34. Muthee V, Bochner AF, Osterman A, et al. The impact of routine data quality assessments on electronic medical record data quality in Kenya. PLoS One. 2018; 13(4): e0195362. doi: 10.1371/journal.pone.0195362.
35. Yadav S, Kazanji N, K C N, Paudel S, et al. Comparison of accuracy of physical examination findings in initial progress notes between paper charts and a newly implemented electronic health record. J Am Med Inform Assoc. 2017; 24(1): 140-144. doi: 10.1093/jamia/ocw067.
36. Abiy R, Gashu K, Asemaw T, et al. A Comparison of Electronic Medical Record Data to Paper Records in Antiretroviral Therapy Clinic in Ethiopia: What is affecting the Quality of the Data? Online J Public Health Inform. 2018; 10(2): e212. doi: 10.5210/ojphi.v10i2.8309.
37. Maletic JI, Marcus A, Data Cleansing: Beyond Integrity Analysis Iq, 2000: 1-10.
38. Daymont C, Ross ME, Russell Localio A, et al. Automated identification of implausible values in growth data from pediatric electronic health records. J Am Med Inform Assoc. 2017; 24(6): 1080-1087. doi: 10.1093/jamia/ocx037.
39. Brown JS, Kahn M, Toh S. Data quality assessment for comparative effectiveness research in distributed data networks. Med Care. 2013; 51(8S3): S22-9. doi: 10.1097/MLR.0b013e31829b1e2c.
40. Lewis AE, Weiskopf N, Abrams ZB, et al. Electronic health record data quality assessment and tools: a systematic review. J Am Med Inform Assoc. 2023; 30(10): 1730-1740. doi: 10.1093/jamia/ocad120.
41. Kahn MG, Callahan TJ, Barnard J, et al. A Harmonized Data Quality Assessment Terminology and Framework for the Secondary Use of Electronic Health Record Data. EGEMS (Wash DC). 2016; 4(1): 1244. doi: 10.13063/2327-9214.1244.
42. Ozonze O, Scott PJ, Hopgood AA. Automating Electronic Health Record Data Quality Assessment. J Med Syst. 2023; 47(1): 23. doi: 10.1007/s10916-022-01892-2.
43. Pageler NM, Grazier G'Sell MJ, Chandler W, et al. A rational approach to legacy data validation when transitioning between electronic health record systems. J Am Med Inform Assoc. 2016; 23(5): 991-4. doi: 10.1093/jamia/ocv173.
44. Ferrão JC, Oliveira MD, Janela F, Martins HM. Preprocessing structured clinical data for predictive modeling and decision support. A roadmap to tackle the challenges. Appl Clin Inform. 2016; 7(4): 1135-1153. doi: 10.4338/ACI-2016-03-SOA-0035.
45. Safran C. Update on Data Reuse in Health Care. Yearb Med Inform. 2017; 26(1): 24-27. doi: 10.15265/IY-2017-013.
46. Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet. 2012; 13(6): 395-405. doi: 10.1038/nrg3208.
47. Estiri H, Klann JG, Weiler SR, et al. A federated EHR network data completeness tracking system. J Am Med Inform Assoc. 2019; 26(7): 637-645. doi: 10.1093/jamia/ocz014.
48. Huser V, DeFalco FJ, Schuemie M, et al. Multisite Evaluation of a Data Quality Tool for Patient-Level Clinical Data Sets. EGEMS (Wash DC). 2016; 4(1): 1239. doi: 10.13063/2327-9214.1239.
49. Pipino LL, Lee YW, Wang RY. Data Quality Assessment Communications of the ACM. 2002; 45(4): 211. doi: 10.1145/505248.506010.
50. Naumann F, Rolker C. Assessment Methods for Information Quality Criteria Information Systems. 2000: 148-162. doi: 10.18452/9207.
51. Woodall P, Oberhofer M, Borek А. A classification of data quality assessment and improvement methods. International Journal of Information Quality, 2014. 3(4): 298-321. doi: 10.1504/IJIQ.2014.068656.
52. DAMA UK Working Group. The six primary dimensions for data quality assessment: defining data quality dimensions. 2013.
53. Weiskopf NG, Bakken S, Hripcsak G, Weng C. A Data Quality Assessment Guideline for Electronic Health Record Data Reuse. EGEMS (Wash DC). 2017; 5(1): 14. doi: 10.5334/egems.218.
54. Johnson SG, Speedie S, Simon G, et al. A Data Quality Ontology for the Secondary Use of EHR Data. AMIA Annu Symp Proc. 2015; 2015: 1937-46.
55. Hartzema AG, Reich CG, Ryan PB, et al. Managing data quality for a drug safety surveillance system. Drug Saf. 2013; 36(1): S49-58. doi: 10.1007/s40264-013-0098-7.
56. Kahn MG, Brown JS, Chun AT, et al. Transparent reporting of data quality in distributed data networks. EGEMS (Wash DC). 2015; 3(1): 1052. doi: 10.13063/2327-9214.1052.
57. Callahan T, Barnard J, Helmkamp L, et al. Reporting Data Quality Assessment Results: Identifying Individual and Organizational Barriers and Solutions. EGEMS (Wash DC). 2017; 5(1): 16. doi: 10.5334/egems.214.
58. Roomaney RA, Pillay-van Wyk V, Awotiwon OF, et al. Availability and quality of routine morbidity data: review of studies in South Africa. J Am Med Inform Assoc. 2017; 24(e1): e194-e206. doi: 10.1093/jamia/ocw075.
59. Estiri H, Stephens KA, Klann JG, Murphy SN. Exploring completeness in clinical data research networks with DQe-c. J Am Med Inform Assoc. 2018; 25(1): 17-24. doi: 10.1093/jamia/ocx109.
Review
For citations:
Kaftanov A.N., Andreychenko A.E., Gusev A.V. Review of methodological approaches to assessing the quality of electronic health records management. Medical Doctor and Information Technologies. 2024;(3):6-19. (In Russ.) https://doi.org/10.25881/18110193_2024_3_6