A review of ways to measure brain cognitive load and machine learning methods for their identification from EEG data
https://doi.org/10.25881/18110193_2024_3_20
Abstract
Aim. The purpose of this article is review and analyze methods for measuring cognitive load, as well as approaches to using machine learning techniques to identify EEG data.
Materials and methods. The review systematizes and summarizes the information on the topic under consideration. Scientific articles were searched in bibliographic databases: eLIBRARY, ScienceDirect, Scopus.
Results. This review focused on ways to measure the cognitive load of the brain, modern EEG recording devices, and methods for transforming, extracting, and classifying features from acquired EEG signals.
Conclusion. With new wearable devices available for acquiring and processing EEG signals, there is a need to develop new approaches for using machine learning to identify cognitive brain processes.
About the Authors
A. E. DedkovRussian Federation
Moscow
D. A. Andrikov
Russian Federation
PhD, Associate Professor
Moscow
A. E. Hramov
Russian Federation
DSc., Professor
Kaliningrad
References
1. SHarova DE, et al. Analiz mirovogo opyta v regulirovanii ispol'zovaniya medicinskih dannyh dlya celej sozdaniya sistem iskusstvennogo intellekta na osnove mashinnogo obucheniya. Vrach i informacionnye tekhnologii. 2022; 4: 28-39. (In Russ.)
2. Karpov OE, Hramov AE. Informacionnye tekhnologii, vychislitel'nye sistemy i iskusstvennyj intellekt v medicine. M.: DPK Press. 2022. Р.321. (In Russ.)
3. Zenkov LR. Klinicheskaya elektroencefalografiya (s elementami epileptologii). М.: MEDpress-inform. 2012. (In Russ.)
4. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews. 1999; 29(2): 169-195. doi:10.1016/S0165-0173(98)00056-3.
5. Khramova MVK, Hramov AE, Fedorov AA. Current Trends in the Development of Neuroscientific Research in Education. Voprosy obrazovaniya. Educational Studies Moscow. 2023; 4. doi: 10.17323/vo-2023-16701.
6. Sheoran M, Kumar S, Chawla S. Methods of denoising of electroencephalogram signal: a review. International Journal of Biomedical Engineering and Technology. 2015; 18(4): 385-395. doi: 10.1504/IJBET.2015.071012.
7. Nuwer M. Assessment of digital EEG, quantitative EEG, and EEG brain mapping: Report of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology. 2024; 1: 277-292. doi: 10.1212/WNL.49.1.277.
8. Polikanova IS, Sergeev AV. Vliyanie dlitel'noj kognitivnoj nagruzki na parametry EEG. Nacional'nyj psihologicheskij zhurnal. 2014; 1(13): 84-92. (In Russ.)
9. Smirnov NM, et al. Novyj elektroencefalograficheskij marker effektivnosti resheniya kognitivnoj zadachi. Izvestiya Rossijskoj akademii nauk. Seriya fizicheskaya. 2023; 1(87): 129-133. (In Russ.)
10. Zeer EF. Nejrodidaktikainnovacionnyj trend personalizirovannogo obrazovaniya. Professional'noe obrazovanie i rynok truda. 2021; 4(47): 30-38. (In Russ.)
11. Grubov VV, Khramova MV, Goman S, et al. Open-loop neuroadaptive system for enhancing student’s cognitive abilities in learning. IEEE Access. Published online 2024. Accessed June 30, 2024. Available at: https://ieeexplore.ieee.org/abstract/document/10487923.
12. Maksimova MV, Etuev HH. Opyt primeneniya eeg v obrazovanii: analiz zarubezhnyh issledovanij. Otechestvennaya i zarubezhnaya pedagogika. 2023; 2(1). (In Russ.)
13. Meghdadi AH, Karić MS, Berka C. EEG analytics: benefits and challenges of data driven EEG biomarkers for neurodegenerative diseases. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE; 2019:1280-1285. Accessed June 30, 2024. Available at: https://ieeexplore.ieee.org/abstract/document/8914065.
14. Örün Ö, Akbulut Y. Effect of multitasking, physical environment and electroencephalography use on cognitive load and retention. Computers in Human Behavior. 2019; 92: 216-229.
15. Park S, Han CH, Im CH. Design of wearable EEG devices specialized for passive brain – computer interface applications. Sensors. 2020; 20(16): 4572.
16. Samojlov VA, et al. Ispol'zovanie mobil'nogo nejrointerfejsa «BrainBit» dlya analiza professional'nyh kachestv sotrudnika sluzhby bezopasnosti. 2021: 249-254. (In Russ.)
17. Krigolson OE, Williams CC, Norton A, Hassall CD, Colino FL. Choosing MUSE: Validation of a low-cost, portable EEG system for ERP research. Frontiers in neuroscience. 2017; 11: 109.
18. Permana K, Wijaya SK, Prajitno P. Controlled wheelchair based on brain computer interface using Neurosky Mindwave Mobile 2. In: AIP Conference Proceedings. Vol 2168. AIP Publishing; 2019. Accessed June 30, 2024. Available at: https://pubs.aip.org/aip/acp/article-abstract/2168/1/020022/611867.
19. Koryakin FI, Sorochinskij MA. Vozmozhnosti i pedagogicheskij potencial nejrointerfejsov (na primere NeuroPlay 6C). 2022. (In Russ.)
20. Hodashinskij IA, et al. Biometricheskie dannye i metody mashinnogo obucheniya v diagnostike i monitoringe nejrodegenerativnyh zabolevanij: obzor. Komp'yuternaya optika. 2022; 6(46): 988-1020. (In Russ.)
21. Winkler I, Haufe S, Tangermann M. Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals. Behav Brain Funct. 2011; 7(1): 30. doi: 10.1186/1744-9081-7-30.
22. Kottaimalai R, Rajasekaran MP, Selvam V, Kannapiran B. EEG signal classification using principal component analysis with neural network in brain computer interface applications. 2013 IEEE International Conference on Emerging Trends in Computing, Communication and Nanotechnology (ICECCN). IEEE; 2013: 227-231. Accessed June 30, 2024. Available at: https://ieeexplore.ieee.org/abstract/document/6528498.
23. Vincent P, Larochelle H, Bengio Y, Manzagol PA. Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning – ICML’08. ACM Press; 2008: 1096-1103. doi: 10.1145/1390156.1390294.
24. Li W, Zhang D, Xu Z. Palmprint identification by fourier transform. Int J Patt Recogn Artif Intell. 2002; 16(04): 417-432. doi: 10.1142/S0218001402001757.
25. Schiff SJ, Aldroubi A, Unser M, Sato S. Fast wavelet transformation of EEG. Electroencephalography and clinical neurophysiology. 1994; 91(6): 442-455.
26. De Ridder D, Kouropteva O, Okun O, Pietikäinen M, Duin RPW. Supervised Locally Linear Embedding. Kaynak O, Alpaydin E, Oja E, Xu L, eds. Artificial Neural Networks and Neural Information Processing – ICANN/ICONIP. 2003; 2714. Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2003: 333-341. doi: 10.1007/3-540-44989-2_40.
27. Zavarzin E, Milakhina N, Rudych P, Savostyanov A. EEG Data Preprocessing for Assessing the Degree of Connectivity of Areas of the Human Brain Under Resting Conditions and their Application to the Diagnosis of Socially Significant Diseases. 2021 IEEE 22nd International Conference of Young Professionals in Electron Devices and Materials (EDM). IEEE; 2021: 582-585. Accessed June 30, 2024. Available at: https://ieeexplore.ieee.org/abstract/document/9507667.
28. Budancev AV, Sklyar AYA. Metody mashinnogo raspoznavaniya komand v EEG-signale. IT-Standart. 2021; 3: 21-27. (In Russ.)
29. Hramov AE, Koronovskii AA, Makarov VA, Maksimenko VA, Pavlov AN, Sitnikova E. Wavelets in Neuroscience. Springer International Publishing; 2021. doi: 10.1007/978-3-030-75992-6.
30. Mirzaei S, Ghasemi P. EEG motor imagery classification using dynamic connectivity patterns and convolutional autoencoder. Biomedical Signal Processing and Control. 2021; 68: 102584.
31. Stas S. Hybrid convolutional-multilayer perceptron artificial neural network for person recognition by high gamma EEG features. 2022; 17(2): 192-196.
32. Hsu WY. EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features. Journal of Neuroscience Methods. 2010; 189(2): 295-302.
33. Volodin MV, Sedyh IA. Ocenka primeneniya ConvLSTM-nejronnoj seti dlya prognozirovaniya epilepticheskih pripadkov. 2023. (In Russ.)
34. Wu SL, Wu CW, Pal NR, Chen CY, Chen SA, Lin CT. Common spatial pattern and linear discriminant analysis for motor imagery classification. In: 2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (Ccmb). IEEE; 2013: 146-151. Accessed June 30, 2024. Available at: https://ieeexplore.ieee.org/abstract/document/6609178.
35. Kapralov NV, Nagornova ZHV, SHemyakina NV. Metody klassifikacii EEG-patternov voobrazhaemyh dvizhenij. Informatika i avtomatizaciya. 2021; 1(20): 94-132. (In Russ.)
36. Zhang Y, Wang Y, Jin J, Wang X. Sparse Bayesian Learning for Obtaining Sparsity of EEG Frequency Bands Based Feature Vectors in Motor Imagery Classification. Int J Neur Syst. 2017; 27(02): 1650032. doi: 10.1142/S0129065716500325.
37. SHanin IA, Stupnikov SA. Metody analiza dannyh elektroencefalografii s primeneniem svertochnyh i rekurrentnyh nejronnyh setej. Sistemy i sredstva informatiki. 2021; 2(31): 36-46. (In Russ.)
38. Tabar YR, Halici U. A novel deep learning approach for classification of EEG motor imagery signals. Journal of neural engineering. 2016; 14(1): 016003.
39. YAmaev MI, SHipicin SP, Filatova ES. Nejronnye seti dlya klassifikacii EEG: ot perceptrona do svertochnoj LSTM-seti, 2018. Р.765-768. (In Russ.)
40. Bentlemsan M, Zemouri ET, Bouchaffra D, Yahya-Zoubir B, Ferroudji K. Random forest and filter bank common spatial patterns for EEG-based motor imagery classification. In: 2014 5th International Conference on Intelligent Systems, Modelling and Simulation. IEEE. 2014: 235-238. Accessed June 30, 2024. Available at: https://ieeexplore.ieee.org/abstract/document/7280913.
41.
Review
For citations:
Dedkov A.E., Andrikov D.A., Hramov A.E. A review of ways to measure brain cognitive load and machine learning methods for their identification from EEG data. Medical Doctor and Information Technologies. 2024;(3):20-31. (In Russ.) https://doi.org/10.25881/18110193_2024_3_20