Preview

Medical Doctor and Information Technologies

Advanced search

Analysis of Real-World Data extracted from electronic medical records in the Webiomed platform

https://doi.org/10.25881/18110193_2024_3_44

Abstract

State programs in the field of healthcare informatization implemented in 2011–2021 resulted in over 91% of state and municipal medical organizations implementing various medical information systems. This made it possible to start the transition to electronic medical records (EMR). The extraction of real-world data (RWD) from the accumulated EMRs and subsequent analysis of these data opens new and promising opportunities for the development of domestic healthcare.

Aim: to analyze the RWD extracted from anonymized EMRs.

Materials and methods: we used Webiomed's predictive analytics platform database, which at the time of the study had accumulated anonymized EMRs of over 29 million patients, including 229 million different medical documents. Data providers for the platform were 856 medical organizations from 28 regions of the Russian Federation. The functionality of the Webiomed platform allows processing unstructured medical documents, extracting data from them suitable for analysis using artificial intelligence technologies.

Results. This paper presents: analysis of medical organizations as data providers for Webiomed platform, analysis of EMC structure and composition, analysis of patient population. The analysis was performed at the moment of data upload on 16.10.2023. More than 4 billion 558 million structured attributes were extracted from the accumulated anonymized EMRs and systematized by different types. The platform contains 147,886,190 cases of diseases classified according to the ICD-10. 8,393,403 patients (28.71% of the total) have medical information in the EMR. The proportion of “empty” EMCs (which did not contain any medical record) was 71.29%. However, EMRs of 3,448,797 patients had more than 10 medical records. The structure of EMRs is dominated by protocols of medical examinations, protocols of laboratory tests, electronic prescriptions, and instrumental examinations. 4,456,263 patients have a depth of data collection of more than 3 years.

Conclusion. The results show that the extraction and processing of RWD from anonymized EMRs do allow the creation of large sets of structured data. Currently, to the best of our knowledge, the Webiomed platform contains the largest database of RWD extracted from EMRs in Russia. The material presented in this paper is the first analysis of EMRs and extracted features performed and published in Russia. Ensuring the quality of work with RWD at all stages, from the development of EMR structure and data input to the formation of digital twins, is the most important condition for their application to solve various tasks in the healthcare system and pharmaceutical industry.

About the Authors

A. V. Gusev
K-SkAI LLC; Federal Research Institute for Health Organization and Informatics
Russian Federation

PhD

Petrozavodsk

Moscow



T. A. Goldina
Representative office of the joint-stock company «Sanofi Russia»
Russian Federation

Moscow



References

1. Gol'dina TA, Burmistrov VA, Efimenko IV, Horoshevskij VF. Iskusstvennyj intellekt v zdravoohranenii: Real World Data i Patient Voice – gotovy li my k novym realiyam? Medicinskie tekhnologii. Ocenka i vybor. 2021; 2(43): 22-31. (In Russ.) doi: 10.17116/medtech20214302122.

2. Gusev AV, Vladzimirskij AV, Golubev NA, Zarubina TV. Informatizaciya zdravoohraneniya Rossijskoj Federacii: istoriya i rezul'taty razvitiya. Nacional'noe zdravoohranenie. 2021; 2(3): 5-17. (In Russ.) doi: 10.47093/2713-069X.2021.2.3.5-17.

3. Kolbin AS, Belousov DYU, Zyryanov SK, et al. Issledovaniya real'noj klinicheskoj praktiki. M.: Buki Vedi, 2020. 208 p.: il. (In Russ.)

4. Гусев А.В., Зингерман Б.В., Тюфилин Д.С., Зинченко В.В. Электронные медицинские карты как источник данных реальной клинической практики // Реальная клиническая практика: данные и доказательства. – 2022. – Т.2. – №2. – С.8-20. doi: 10.37489/2782-3784-myrwd-13.

5. Gol'dina TA. Issledovaniya rutinnoj klinicheskoj praktiki: ot polucheniya dannyh k ocenke medicinskih tekhnologij i prinyatiyu reshenij v zdravoohranenii. Medicinskie tekhnologii. Ocenka i vybor. 2018; 1(31): 21-29. (In Russ.)

6. Yamamoto K, Sumi E, Yamazaki T, et al. A pragmatic method for electronic medical record-based observational studies: developing an electronic medical records retrieval system for clinical research. BMJ Open. 2012; 2: e001622. doi: 10.1136/bmjopen-2012-001622.

7. Homickaya YUV, Osina GS, Novoderezhkina EA, Gol'dina TA. Issledovaniya rutinnoj praktiki: kak razrabotat' i vnedrit' novoe napravlenie. Sistemnyj podhod v obespechenii kachestva rezul'tatov. Medicinskie tekhnologii. Ocenka i vybor. 2021; 4(43): 16-27. (In Russ.). doi: 10.17116/medtech20214304116.

8. Gol'dina TA, Kolbin AS, Belousov DYU, Borovskaya VG. Obzor issledovanij real'noj klinicheskoj praktiki. Kachestvennaya klinicheskaya praktika. 2021; 1: 56-63. (In Russ.) doi: 10.37489/2588-0519-2021-1-56-63.

9. Fu S, Chen D, He H, et al. Clinical concept extraction: A methodology review. J Biomed Inform. 2020; 109: 103526. doi: 10.1016/j.jbi.2020.103526.

10. Zhao ., Weroh SJ, Goode EL, et al. Generating real-world evidence from unstructured clinical notes to examine clinical utility of genetic tests: use case in BRCAness. BMC Med Inform Decis Mak. 2021; 21: 3. doi: 10.1186/s12911-020-01364-y.

11. van Laar S, Gombert-Handoko K, Groenwold R, et al. Real-World Metastatic Renal Cell Carcinoma Treatment Patterns and Clinical Outcomes in The Netherlands. Front. Pharmacol. 2022; 13: 803935. doi: 10.3389/fphar.2022.803935.

12. Webiomed.Connect. https://webiomed.ru/products/integratsionnyi-shliuz-webiomedconnect.

13. Kobyakova OS. Tekhnologii iskusstvennogo intellekta v zdravoohranenii v global'noj patentnoj ekosisteme: 2000-2023 gg. Vrach i informacionnye tekhnologii. 2024; 1: 44-59. (In Russ.) doi: 10.25881/18110193_2024_1_44.

14. Gusev AV, Tokarev SA, Gavrilov DV, Kuznecova TYU. Primenenie avtomatizirovannoj sistemy podderzhki prinyatiya vrachebnyh reshenij pri dispanserizacii vzroslogo naseleniya dlya kontrolya pravil'nosti ocenki urovnya serdechno-sosudistogo riska. Menedzhment kachestva v medicine. 2022; 1: 72-79. (In Russ.)

15. Kurdyumov DA, Kashin AV, Ryabov NYU, et al. Opyt primeneniya tekhnologij iskusstvennogo intellekta dlya razvitiya profilakticheskogo zdravoohraneniya na primere Kirovskoj oblasti. Menedzher zdravoohraneniya. 2023; 6: 62-69. (In Russ.). doi: 10.21045/1811-0185-2023-6-62-69.

16. Belorus OV, Tokarev SA, Zaharova MG, Gusev AV. Rezul'taty pilotnogo vnedreniya tekhnologij iskusstvennogo intellekta v sistemu zdravoohraneniya YAmalo-Neneckogo avtonomnogo okruga. Menedzhment kachestva v medicine. 2023; 3: 39-47. (In Russ.)

17. Gilyarevskij SR, Gavrilov DV, Gusev AV. Rezul'taty retrospektivnogo analiza zapisej elektronnyh ambulatornyh medicinskih kart pacientov s hronicheskoj serdechnoj nedostatochnost'yu: pervyj rossijskij opyt. Rossijskij kardiologicheskij zhurnal. 2021; 26(5): 147-155. (In Russ.) doi: 10.15829/1560-4071-2021-4502.

18. Batyushin MM, Kasimova IS, Gavrilov DV, et al. Rasprostranennost' hronicheskoj bolezni pochek po dannym retrospektivnogo kogortnogo issledovaniya «epidemiologiya HBP» (gorod Kirov). Nefrologiya i dializ. 2021; 23(2): 192-202. (In Russ.) doi: 10.28996/2618-9801-2021-2-192-202.

19. Druzhilov MA, Kuznecova TYU, Druzhilova OYU, et al. Fibrillyaciya predserdij i hronicheskaya bolezn' pochek: osnovnye klinicheskie harakteristiki pacientov v otdel'nyh sub"ektah Rossijskoj Federacii. Kardiovaskulyarnaya terapiya i profilaktika. 2023; 22(4):57-67. (In Russ.) doi: 10.15829/1728-8800-2023-3544.


Review

For citations:


Gusev A.V., Goldina T.A. Analysis of Real-World Data extracted from electronic medical records in the Webiomed platform. Medical Doctor and Information Technologies. 2024;(3):44-61. (In Russ.) https://doi.org/10.25881/18110193_2024_3_44

Views: 141


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1811-0193 (Print)
ISSN 2413-5208 (Online)