Modern approaches to segmentation and analysis of brain structures: problems and solutions
https://doi.org/10.25881/18110193_2025_1_42
Abstract
Currently, artificial intelligence is one of the most rapidly developing areas of human knowledge. This topic is of great importance for science and practice, in general, and for medicine, in particular. Application of artificial intelligence technologies to the segmentation of brain areas and detection of abnormal areas is especially demanded and promising in the field of neurophysiology, neurosurgery, psychiatry, clinical psychology and other medical disciplines. This paper investigates existing methods for automated segmentation and analysis of data on the structure and functional state of the brain, as well as metrics used to evaluate the effectiveness of this approach.
Materials and methods. The work was performed using Systematic Mapping Study (SMS) methodology.
This study is limited to the subject area related to segmentation of brain areas and identification of abnormal areas in the brain.
Results. The main results of the study are presented in the form of classification tables and a mental map. It is shown that the purpose of the reviewed research is to improve accuracy in segmenting brain areas and finding abnormal areas. Such a metric as data processing time is used to evaluate the efficiency of the method for a small number of studies, and in most cases it is not considered at all. At the same time, the speed of image processing, depending on the method used, is measured in minutes, which significantly limits the possibility of using this approach in emergency situations, including life-threatening situations.
Conclusion. To analyze data on the structure and functional state of the brain in real time, modification of already developed methods of encephalic segmentation is required, as well as development of new, more efficient approaches. At the same time, the speed of data processing should be commensurate with the time of making an urgent conclusion about the state of the human brain.
About the Authors
V. A. TsygankovRussian Federation
Volgograd
R. A. Kudrin
Russian Federation
DSc, Associate Professor
Volgograd
A. V. Kataev
Russian Federation
PhD, Associate Professor
Volgograd
O. A. Shabalina
Russian Federation
PhD, Associate Professor
Volgograd
N. P. Sadovnikova
Russian Federation
DSc, Professor
Volgograd
References
1. Vasil'eva EB, Talypov AE, Petrikov SS. Osobennosti klinicheskogo techeniya cherepno-mozgovoj travmy pri razlichnyh vidah povrezhdeniya golovnogo mozga. NMP. 2019; 3: 295-301. (In Russ.) doi: 10.23934/2223-9022-2019-8-3-295-301.
2. Sergeev VA, Sergeeva PV, Patrakova AA. Kliniko-psihologicheskij analiz emocional'nolichnostnyh rasstrojstv u bol'nyh s otdalyonnymi posledstviyami cherepno-mozgovyh travm, oslozhnyonnyh i neoslozhnyonnyh alkogolizmom. Nauchnye rezul'taty biomedicinskih issledovanij. 2020; 3: 417-433. (In Russ.) doi: 10.18413/2658-6533-2020-6-3-0-11.
3. Lihterman LB, Kravchuk AD, Filatova MM. Sotryasenie golovnogo mozga: taktika lecheniya i iskhody. Annaly klinicheskoj i eksperimental'noj nevrologii. 2008; 1: 1-10. (In Russ.)
4. Trashkov AP, Spirin AL, Cygan NV, Artemenko MR, et al. Glial'nye opuholi golovnogo mozga: obshchie principy diagnostiki i lecheniya. Pediatr. 2015; 4: 75-84. (In Russ.) doi: 10.171816/PED6475-84.
5. Plahova VV, Kruchinina EA. Voprosy diagnostiki i lecheniya zlokachestvennyh novoobrazovanij. FORCIPE. 2019; 1: 564-564. (In Russ.)
6. Shcherbuk AYu, Eroshenko ME, Shcherbuk YuA. Sovremennye metody kartirovaniya funkcional'no znachimyh zon golovnogo mozga v hirurgii opuholej central'nyh izvilin. Vestn. hir. 2017; 4: 104-109. (In Russ.)
7. Kremneva EI, Konovalov RN, Krotenkova MV. Funkcional'naya magnitno-rezonansnaya tomografiya. Annaly klinicheskoj i eksperimental'noj nevrologii. 2011; 5(1): 30-34. (In Russ.)
8. Kulikova SN, Bryuhov VV, Peresedova AV, Krotenkova MV, Zavalishin IA. Diffuzionnaya tenzornaya magnitno-rezonansnaya tomografiya i traktografiya pri rasseyannom skleroze: obzor literatury. ZHurnal nevrologii i psihiatrii im. S.S. Korsakova. Specvypuski. 2012; 112(2-2): 52-59. (In Russ.)
9. Krotenkova MV, Suslin AS, Tanashyan MM, Konovalov RN, Bryuhov VV. Diffuzionno-vzveshennaya MRT i MRT-perfuziya v ostrom periode ishemicheskogo insul'ta. Annaly klinicheskoj i eksperimental'noj nevrologii. 2009; 3(4): 11-16. (In Russ.)
10. SHestakova AN, Butorina AV, Osadchij AE, SHtyrov YUYU. Magnitoencefalografiya – novejshij metod funkcional'nogo kartirovaniya mozga cheloveka. Eksperimental'naya psihologiya. 2012; 5(2): 119-134. (In Russ.)
11. Gulyaev SA. Elektroencefalografiya i issledovaniya funkcional'noj aktivnosti golovnogo mozga. Russkij zhurnal detskoj nevrologii. 2021; 16(4): 59-68. (In Russ.)
12. Dyukarev VV. Pozitronno-emissionnaya tomografiya: sushchnost' metoda, dostoinstva i nedostatki. BMIK. 2013; 3(11): 1196. (In Russ.)
13. Sankovec DN, Gned'ko TV, Svirskaya OYA. Blizkaya k infrakrasnoj spektroskopiya (NIRS) – novaya kraska v palitre neonatologa. Neonatologiya: Novosti. Mneniya. Obuchenie. 2017; 1(15): 58-71. (In Russ.)
14. Davydovskij IV. Vrachebnye oshibki. Sov. med. 1941; 3: 3-10. (In Russ.)
15. Sultanov IYA. O nekotoryh tak nazyvaemyh ob"ektivnyh prichinah diagnosticheskih oshibok v prakticheskoj deyatel'nosti vrachej. Vestnik RUDN. Seriya: Medicina. 2002; 2: 34-38. (In Russ.)
16. Sigaeva DV, Loginov MS. Vliyanie kachestva iskhodnogo nabora dannyh dlya mashinnogo obucheniya na tochnost' diagnoza. Scientist. 2022; 4(22): 130-132. (In Russ.)
17. Mahambetchin MM. K diskussii o vrachebnyh oshibkah. Klinicheskaya medicina. 2021; 2: 150-152. (In Russ.)
18. Andropova PL, Gavrilov PV, Kolesnikova PA, et al. Diagnosticheskaya effektivnost' otdel'nyh sistem avtomaticheskogo analiza KT-izobrazhenij v vyyavlenii ishemicheskogo insul'ta v bassejne srednej mozgovoj arterii. Sibirskij zhurnal klinicheskoj i eksperimental'noj mediciny. 2023; 3: 194-200. (In Russ.) doi: 10.29001/2073-8552-2023-39-3-194-200.
19. Jin L, Min L, Jianxin W, et al. A Survey of MRI-Based Brain Tumor Segmentation Methods. 2014; 19(6): 578-595. doi: 10.1109/TST.2014.6961028.
20. Abdulrakeb ARA, Sushkova LT, Lozovskaya NA. Obzor metodov segmentacii opuholej na MRT-izobrazheniyah golovnogo mozga. Prikaspijskij zhurnal: upravlenie i vysokie tekhnologii. 2015; 1(29): 122-138. (In Russ.)
21. Ahlam AH, Sarmad HM, Ban SI. Segmentation and Isolation of Brain Tumors Using Different Images Segmentation Methods. 2024; 21(8): 1-8. doi: 10.21123/bsj.2024.7640.
22. Kai P, Sairam V, Ludwik K. Guidelines for conducting systematic mapping studies in software engineering: An update, Information and Software Technology. 2015; 64: 1-18. doi: 10.1016/j.infsof.2015.03.007.
23. Vanhala E, Kasurinen J, Knutas A, Herala A. The Application Domains of Systematic Mapping Studies: A Mapping Study of the First Decade of Practice With the Method. 2022; 10: 37924-37937. doi: 10.1109/ACCESS.2022.3165079.
24. Alekseeva MG, Zubov AI, Novikov MYU. Iskusstvennyj intellekt v medicine. Mnizh. 2022; №7-2(121): 10-13. (In Russ.) doi: 10.23670/IRJ.2022.121.7.038.
25. Ivanova VN, Latkin AP, Fersht VM. Sovremennye podhody k ispol'zovaniyu iskusstvennogo intellekta v medicine. Territoriya novyh vozmozhnostej. 2020; 1: 121-130. (In Russ.). doi: 10.24866/VVSU/2073-3984/2020-1/121-130.
26. Gusev A. Obzor Rossijskih sistem iskusstvennogo intellekta dlya zdravoohraneniya. Available at: https://webiomed.ru/blog/obzor-rossiiskikh-sistem-iskusstvennogo-intellekta-dlia-zdravookhraneniia. Accessed 20.07.2024. (In Russ.)
27. Bruce F, David HS, Evelina B, et al. Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain. 2002; 33: 341-355. doi: 10.1016/S0896-6273(02)00569.
28. Chen B, Zhang L, Chen H, Liang K, Chen X. A novel extended Kalman filter with support vector machine-based method for the automatic diagnosis and segmentation of brain tumors. 2021; 200: 105797.
29. Kumar DM, Satyanarayana D, Prasad MG. MRI brain tumor detection using optimal possibilistic fuzzy C-means clustering algorithm and adaptive k-nearest neighbor classifier. Journal of Ambient Intelligence and Humanized Computing. 2021; 12(2): 2867-2880. doi: 10.1007/s12652-020-02444-7.
30. Srinivasa RA, Chenna RP. MRI brain tumor segmentation and prediction using modified region growing and adaptive SVM. 2021; 25: 4135-4148. doi: 10.1007/s00500-020-05493-4.
31. Sheela CJJ, Suganthi G. Accurate MRI brain tumor segmentation based on rotating triangular section with fuzzy C-means optimisation. Sādhanā. 2021; 46(4). doi: 10.1007/s12046-021-01744-8.
32. Gokulalakshmi A, Karthik S, Karthikeyan N, Kavitha MS. ICM-BTD: improved classification model for brain tumor diagnosis using discrete wavelet transform-based feature extraction and SVM classifier. 2020; 24: 18599-18609. doi: 10.1007/s00500-020-05096-z.
33. Sharath CP, Soundarya J, Priyadharsini R. Brain tumor detection and classification using K-means clustering and SVM classifier. 2018; 49-63. doi: 10.1007/978-981-13-8323-6_5.
34. Hussain A, Khunteta A. Semantic segmentation of brain tumor from MRI images and SVM classification using GLCM features. 2020; 38-43. doi: 10.1109/ICIRCA48905.2020.9183385.
35. Kumar DM, Satyanarayana D, Prasad MG. An improved Gabor wavelet transform and rough K-means clustering algorithm for MRI brain tumor image segmentation. 2021; 80(1): 6939-6957. doi: 10.1007/s11042-020-09635-6.
36. Shahajad M, Gambhir D, Gandhi R. Features extraction for classification of brain tumor MRI images using support vector machine. 2021; 767-772. doi: 10.1109/Confluence51648.2021.9377111.
37. Krishnakumar S, Manivannan K. Effective segmentation and classification of brain tumor using rough K means algorithm and multi-kernel SVM in MR images. 2021; 12: 6751-6760. doi: 10.1007/s12652-020-02300-8.
38. Mehrotra R, Ansari MA, Agrawal R. A Novel Scheme for Detection & Feature Extraction of Brain Tumor by Magnetic Resonance Modality Using DWT & SVM. 2020; 225-230. doi: 10.1109/IC3A48958.2020.233302.
39. Sarkar A, Maniruzzaman M, Ahsan MS, et al. Identification and classification of brain tumor from MRI with feature extraction by support vector machine. 2020; 1-4. doi: 10.1109/INCET49848.2020.9154157.
40. Anaya-Isaza A, Mera-Jiménez L. Data augmentation and transfer learning for brain tumor detection in magnetic resonance imaging. 2022; 10(4): 23217-23233. doi: 10.1109/ACCESS.2022.3154061.
41. Musallam AS, Sherif AS, Hussein MK. A new convolutional neural network architecture for automatic detection of brain tumors in magnetic resonance imaging images. 2022; 10(99): 2775-2782. doi: 10.1109/ACCESS.2022.3140289.
42. More SS, Mange MA, Sankhe MS, Sahu SS. Convolutional Neural Networkbased Brain Tumor Detection. 2021; 1532-1538. doi: 10.1063/5.0217286.
43. Le N, Yamazaki K, Quach KG, Truong D, Savvides M. A multi-task contextual atrous residual network for brain tumor detection & segmentation. In 2020 25th International Conference on Pattern Recognition. 2021: 5943-5950. doi: 10.1109/ICPR48806.2021.9412414.
44. Ma L, Zhang F. End-to-end predictive intelligence diagnosis in brain tumor using lightweight neural network. 2021; 111: 107666. doi: 10.1016/j.asoc.2021.107666.
45. Kesav N, Jibukumar MG. Efficient and low complex architecture for detection and classification of Brain Tumor using RCNN with Two Channel CNN. 2022; 34(8): 6229-6242. doi: 10.1016/j.jksuci.2021.05.008.
46. Ottom MA, Rahman HA, Dinov ID. Znet: deep learning approach for 2D MRI brain tumor segmentation. 2022; 10: 1-8. doi: 10.1109/JTEHM.2022.3176737.
47. Qader SM, Hassan BA, Rashid TA. An improved deep convolutional neural network by using hybrid optimisation algorithms to detect and classify brain tumor using augmented MRI images. – 2022; 1-28. doi: 10.21203/rs.3.rs-1746725/v1.
48. Sharif MI, Khan MA, Alhussein M, Aurangzeb K, Raza M. A decision support system for multimodal brain tumor classification using deep learning. Complex & Intelligent Systems. 2021; 8(1): 1-14. doi: 10.1007/s40747-021-00321-0.
49. Chanu MM, Thongam K. Computer-aided detection of brain tumor from magnetic resonance images using deep learning network. Journal of Ambient Intelligence and Humanized Computing. 2021; 12: 6911-6922. doi: 10.1007/s12652-020-02336-w.
50. Sethy PK, Behera SK. A data-constrained approach for brain tumor detection using fused deep features and SVM. 2021; 80(4): 28745-28760. doi: 10.1007/s11042-021-11098-2.
51. Preethi S, Aishwarya P. An efficient wavelet-based image fusion for brain tumor detection and segmentation over PET and MRI image. 2021; 80(1): 14789-14806. doi: 10.1007/s11042-021-10538-3.
52. Sharif MI, Li JP, Amin J, Sharif A. An improved framework for brain tumor analysis using MRI based on YOLOv2 and convolutional neural network. 2021; 7: 2023-2036. doi: 10.1007/s40747-021-00310-3.
53. Dmitriev GA, Kirsanova AV, Al'baheli VAA. Avtomaticheskoe vydelenie oblasti ostrogo ishemicheskogo insul'ta na MRT-izobrazheniyah. Prikaspijskij zhurnal: upravlenie i vysokie tekhnologii. 2014; 4(28): 166-174. (In Russ.)
54. Magonov EP, Prahova LN, Il'ves AG, Kataeva GV, Trofimova TN. Avtomaticheskaya segmentaciya MRT-izobrazhenij golovnogo mozga: metody i programmnoe obespechenie. Sankt-Peterburg: Kollektiv avtorov. 2014: 1-5. (In Russ.)
55. Andzhali HT, Anandrao BK. Segmentaciya opuholi golovnogo mozga na magnitno-rezonansnoj tomografii s ispol'zovaniem nechetkogo deformiruemogo sliyaniya i algoritma Dolphin-SCA. Nauchno-tekhnicheskij vestnik informacionnyh tekhnologij, mekhaniki i optiki. 2023; 23(4): 1-10. (In Russ.) doi: 10.17586/2226-1494-2023-23-4-776-785.
56. Zubov AYU, Senyukova OV. Segmentaciya izobrazhenij magnitno-rezonansnoj tomografii golovnogo mozga s pomoshch'yu sopostavleniya s neskol'kimi atlasami. M.: MGU imeni M.V. Lomonosova. 2015: 1-6. (In Russ.)
57. Zotin AG, Kirillova SV, Kurako MA, Hamad YUA, Simonov KV. Obnaruzhenie opuholi mozga na osnove mrt s primeneniem metoda nechetkoj klasterizacii s-srednih. Sibirskij gosudarstvennyj universitet nauki i tekhnologii im. akademika M.F. Reshetneva. 2019: 1-11. (In Russ.)
58. Tekhnologii iskusstvennogo intellekta v zdravoohranenii. Available at: https://mosmed.ai. Accessed 07.08.2024. (In Russ.)
59. Hongwei BL, Gian MC, Syed MA, et al. The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn). PapersWithCode. 2023; 1-6.
60. Lalande A, Chen Z, Decourselle T, et al. Emidec: A Database Usable for the Automatic Evaluation of Myocardial Infarction from Delayed-Enhancement Cardiac MRI. 2020; 5-89.
61. Kenneth C, Bruce V, Kirk S, et al. The Cancer Imaging Archive: Maintainingand Operating a Public Information Repository. 2013; 26(6). doi: 1045-1057.10.1007/s10278-013-9622-7.
62. Eduarda PM, Roberta C, Celine SG, Monica LM. Updating TCGA glioma classification through integration of molecular profiling data following the 2016 and 2021 WHO guidelines. 2023; 11. doi: 10.1101/2023.02.19.529134.
63. Kennedy KM, Raz N. Social Cognitive Neuroscience, Cognitive Neuroscience, Clinical Brain Mapping. 2015; 58(1): 259-289. doi: 10.1146/annurev.psych.58.110405.085654.
64. Rumyancev PO, Saenko VA, Rumyanceva UV, CHekin SYU. Statisticheskie metody analiza v klinicheskoj praktike. Medicinskij radiologicheskij nauchnyj centr RAMN. Р.1-44. (In Russ.)
65. Andropova PL, Gavrilov PV, Savinceva ZHI, Vovk AV, Rybin EV. Primenenie sistem iskusstvennogo intellekta v nejroradiologii ostrogo ishemicheskogo insul'ta. Luchevaya diagnostika i terapiya. 2021; 2(12): 30-35. (In Russ.) doi: 10.22328/2079-5343-2021-12-2-30-36.
66. Tolmachev IV, Starikov YUV, Starikova EG, et al. Iskusstvennyj intellekt v onkologii: oblasti primeneniya, perspektivy i ogranicheniya. Voprosy onkologii. 2022; 6(68): 691-699. (In Russ.) doi: 10.37469/0507-3758-2022-68-6-691-699.
67. Sidyakina IV, SHapovalenko TV, Lyadov KV. Mekhanizmy nejroplastichnosti i reabilitaciya v ostrejshem periode insul'ta. Annaly klinicheskoj i eksperimental'noj nevrologii. 2013; 7(1): 52-56. (In Russ.)
Review
For citations:
Tsygankov V.A., Kudrin R.A., Kataev A.V., Shabalina O.A., Sadovnikova N.P. Modern approaches to segmentation and analysis of brain structures: problems and solutions. Medical Doctor and Information Technologies. 2025;(1):42-57. (In Russ.) https://doi.org/10.25881/18110193_2025_1_42