Preview

Medical Doctor and Information Technologies

Advanced search

Experimental analysis of the accuracy of cephalometric landmark identification in lateral teleroentgenograms

https://doi.org/10.25881/18110193_2025_1_70

Abstract

Objective. To evaluate the promising application of neural networks for cephalometric analysis by analyzing the accuracy of manual identification of anatomical landmarks on digital lateral teleradiographs.

Materials and Methods. Markup of 100 anonymized teleradiographs in lateral projection by eleven orthodontists on 21 parameters was performed, 23100 digital X-ray images with a reference point plotted on them were obtained. The coordinates of the reference point were compared with the “base point”, i.e. the averaged coordinate for each reference point among all its localizations.

Results. According to the criterion of average deviation from the “base point”, the best accuracy was achieved for the apices of the incisal edges of the central incisors of the maxilla (is) (0.589, CI = 95%) and mandible (ii) (0.835, CI = 95%), as well as for the middle of the entrance to the Turkish saddle (S) (0.662, CI = 95%). For the group of landmarks with the lowest consistency, which included points such as Po (4.330, CI = 95%), Pt (2.999, CI = 95%) and Ba (2.887, CI = 95%), the use of artificial neural networks alone is likely to be insufficient to automate identifications and improve the quality of cephalometric analysis and other machine learning elements will need to be implemented.

Conclusion. Considering the results of our study, we can conclude that the proposed method demonstrates high accuracy for most points and can be used to automate cephalometric analysis with further development of machine learning technologies.

About the Authors

I. O. Ayupova
FSBEI HE SamSMU MOH Russia
Russian Federation

PhD

Samara



A. V. Kolsanov
FSBEI HE SamSMU MOH Russia
Russian Federation

DSc, Professor, Professor of the RAS

Samara



N. V. Popov
FSBEI HE SamSMU MOH Russia
Russian Federation

DSc, Associate Professor

Samara



A. M. Khamadeeva
FSBEI HE SamSMU MOH Russia
Russian Federation

DSc, Professor

Samara



M. A. Davidiuk
University of the People
United States

Pasadena, California



S. R. Kiryukov
Samara branch of Moscow City University
Russian Federation

PhD, Associate Professor

Samara



O. N. Ayupov
Medical University «Reaviz»
Russian Federation

Samara



References

1. Rogatskii DV. Luchevaya diagnostica v stomatologii 2D/3D/. М.: ТАRКОММ, 2021. 403 р. (In Russ.)

2. Kamoen A, Dermaut L, Verbeeck R. The clinical significance of error measurement in the interpretation of treatment results. Eur J Orthod. 2011; 14: 569-78.

3. Tng TT, Chan T, Hägg U, Cooke M. Validity of cephalometric landmarks. An experimental study. Eur J Orthod. 1994; 14: 110-20. doi: 10.1093/ejo/16.2.110.

4. Bichu YM, Hansa I, Bichu AY, Premjani P, Flores-Mir C, Vaid NR. Applications of artificial intelligence and machine learning in orthodontics: a scoping review. Prog Orthod. 2021; 22(1): 18. doi: 10.1186/s40510-021-00361-9.

5. Muraev AA, Tsai P, Kibardin I, Oborotistov N, et al. Frontal cephalometric landmarking: humans vs artificial neural networks. Int J Comput Dent. 2020; 23(2): 139-148.

6. Kök H, Izgi MS, Acilar AM. Determination of growth and development periods in orthodontics with artificial neural network. Orthod Craniofac Res. 2021; 24(S2): 76-83. doi: 10.1111/ocr.12443.

7. Yao J, Zeng W, He T, Zhou S, et al. Automatic localization of cephalometric landmarks based on convolutional neural network. Am J Orthod Dentofacial Orthop. 2022; 161(3): e250-e259. doi: 10.1016/j.ajodo.2021.09.012.

8. Londono J, Ghasemi S, Hussain SA, et al. Evaluation of deep learning and convolutional neural network algorithms accuracy for detecting and predicting anatomical landmarks on 2D lateral cephalometric images: A systematic review and meta-analysis. Saudi Dent J. 2023; 35(5): 487-497. doi: 10.1016/j.sdentj.2023.05.014.

9. Hwang HW, Park J, Moon JH, et al. Automated Identification of Cephalometric Landmarks: Part 2. Might It Be Better Than human? Angle Orthod. 2020; 90(1): 69-76. doi: 10.2319/022019-129.1.

10. Bajjad AA, Gupta S, Agarwal S, et al. Use of artificial intelligence in determination of bone age of the healthy individuals: A scoping review. J World Fed Orthod. 2024; 13(2): 95-102. doi: 10.1016/j.ejwf.2023.10.001.

11. Czako L, Sufliarsky B, Simko K, Sovis M, et al. Exploring the Practical Applications of Artificial Intelligence, Deep Learning, and Machine Learning in Maxillofacial Surgery: A Comprehensive Analysis of Published Works. Bioengineering (Basel). 2024; 11(7): 679. doi: 10.3390/bioengineering11070679.

12. Oborotistov NU, Muraev AA, Mokrenko ME, et al. Sravnenie tradicionnoi – ruchnoi I avtomatizirovannoi sistem rasstanovki cephalometricheskih tochek na telerentgenogramme golovi v bokovoi proekcii v specializirovannih programmah. Оrtodontia. 2022; 4(100): 22-29. (In Russ.)

13. Kolsanov AV, Popov NV, Ayupova IO, Ivleva AI. Soglasovannost mneniy expertov pri izuchenii pozicii opornih tochek dlya izucheniya myagkotkannogo prophilya licha na chiphrovih telerent-genologicheskih snimkah bokovoi proekchii cherepa. Stomatology, 2021; 100(4): 49-54. (In Russ.) doi: 10.17116/stomat202110004149.

14. Subramanian AK, Chen Y, Almalki A, Sivamurthy G, Kafle D. Cephalometric Analysis in Orthodontics Using Artificial Intelligence-A Comprehensive Review. Biomed Res Int. 2022; 2022: 1880113. doi: 10.1155/2022/1880113.

15. Kunz F, Stellzig-Eisenhauer A, Zeman F, Boldt J. Artificial intelligence in orthodontics. Journal of Orofacial Orthopedics/Fortschritte der Kieferorthopädie. 2020; 81(1): 52-68. doi: 10.1007/s00056-019-00203-8.

16. Persin LS. Orthodontics. National Manual in 2 vol. T.1. Diagnosis of dentoalveolar anomalies. M.: GEOTAR-Media, 2020. Р.304. doi: 10,33029/9704-5408-4-1-ONRD-2020-1-304.

17. Meric P, Naoumova J. Web-based Fully Automated Cephalometric Analysis: Comparisons between App-aided, Computerized, and Manual Tracings. Turkish Journal of Orthodontics. 2020; 33(3): 142-149. doi: 10.5152/turkjorthod.2020.20062.

18. Schwendicke F, Chaurasia A, Arsiwala L, et al. Deep learning for cephalometric landmark detection: systematic review and meta-analysis. Clin Oral Investig. 2021; 25(7): 4299-4309. doi: 10.1007/s00784-021-03990-w.

19. Gong BW, Chang S, Zuo FF, et al. Automated cephalometric landmark identification and location based on convolutional neural network. Zhonghua Kou Qiang Yi Xue Za Zhi. 2023; 58(12): 1249-1256. doi: 10.3760/cma.j.cn112144-20230829-00118.

20. Butul B, Sharab L. Obstacles behind the innovation-a peek into Artificial intelligence in the field of orthodontics. A Literature review. The Saudi Dental Journal. 2024. doi: 10.1016/j.sdentj.2024.03.008.

21. Ahn HJ, Soo-Hwan BSH, Baek SH, et al. A Comparative Analysis of Artificial Intelligence and Manual Methods for Three-Dimensional Anatomical Landmark Identification in Dentofacial Treatment Planning. Bioengineering. 2024; 11(4): 318. doi: 10.3390/bioengineering11040318.

22. Silva TP, Pinheiro MCR, Freitas DQ, et al. Assessment of accuracy and reproducibility of cephalometric identification performed by 2 artificial intelligence-driven tracing applications and human examiners. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2024. 137(4): 431-440. doi: 10.1016/j.oooo.2024.01.011.

23. Durão AR, Pittayapat P, Rockenbach MI, Olszewski R, et al. Validity of 2D lateral cephalometry in orthodontics: a systematic review. Prog Orthod. 2013; 14(1): 31. doi: 10.1186/2196-1042-14-31.

24. Kotuła J, Kuc AE, Lis J, Kawala B, Sarul M. New Sagittal and Vertical Cephalometric Analysis Methods: A Systematic Review. Diagnostics. 2022; 12(7): 1723. doi: 10.3390/diagnostics12071723.

25. Kattan EE, Kattan MH, Elhiny OA. A New Horizontal Plane of the Head, ID Design Press, Skopje. Repub. Maced. Open Access Maced. J. Med. Sci. 2018; 6: 767-771. doi: 10.3889/oamjms.2018.172.

26. Kumar V, Sundareswaran S. Cephalometric Assessment of Sagittal Dysplasia: A Review of Twenty-One Methods. Journal of Indian Orthodontic Society. 2014; 48(1): 33-41. doi: 10.5005/jp-journals-10021-1215.

27. Houston WJB, Maher RE, McElroy D, Sherriff M. Sources of error in measurements from cephalometric radiographs. Eur J Orthod. 1986; 14: 149-51. doi: 10.1093/ejo/8.3.149.

28. Baumrind S, Frantz RC. The reliability of head film measurements. 1. Landmark identification. Am J Orthod. 1971; 14: 111-27. doi: 10.1016/0002-9416(71)90028-5.

29. Park JA, Lee JS, Koh KS, Song WC. The use of a zygomatic arc as a reference line for clinical applications and anthropological research. Surg. Radiol. Anat. 2019; 41: 501-505.

30. Uğurlu M. Performance of a Convolutional Neural Network-Based Artificial Intelligence Algorithm for Automatic Cephalometric Landmark Detection. Turk J Orthod. 2022; 35(2): 94-100. doi: 10.5152/TurkJOr-thod.2022.22026.

31. Lindner C, Wang CW, Huang CT, Li CH, et al. Fully Automatic System for Accurate Localisation and Analysis of Cephalometric Landmarks in Lateral Cephalograms. Sci Rep. 2016; 6: 33581. doi: 10.1038/srep33581.

32. Kim YH, Lee C, Ha EG, Choi YJ, Han SS. A fully deep learning model for the automatic identification of cephalometric landmarks. Imaging Sci Dent. 2021; 51(3): 299-306. doi: 10.5624/isd.20210077.

33. Durão AP, Morosolli A, Pittayapat P, et al. Cephalometric landmark variability among orthodontists and dentomaxillofacial radiologists: a comparative study. Imaging Sci Dent. 2015; 45: 213-220.

34. Lau PY, Cooke MS, Hägg U. Effect of training and experience on cephalometric measurement errors on surgical patients. Int J Adult Orthodon Orthognath Surg. 1997; 12: 204-213.

35. Ayupova IO, Morina AV, Kolsanov AV, et al. Sravnitelnaya ocenka metodov chephalometricheskogo analiza telerentgenogramm bokovoi proekcii cherepa черепа. Institut stomatologii. 2023; №1(98): 76-78. (In Russ.)

36. Gravely JF, Benzies PM. The clinical significance of tracing error in cephalometry. Br J Orthod. 1974; 1: 95-101.

37. Kolsanov AV, Popov NV, Ayupova IO, et al. Opredelenie relevantnosty telerentgenographicheskih issledovanii v praktike vrachei-ortodontov. Medichinskaya tehnika. 2023; 3(339): 29-32. (In Russ.)

38. Kolsanov AV, Popov NV, Ayupova IO, et al. Determination of the Usability of Teleroentgenographic Studies in Orthodontic Practice. Biomedical Engineering. 2023; 57(3): 195-199. doi: 10.1007/s10527-023-10296-6.

39. Tanikawa C, Yamamoto T, Yagi M, Takada K. Automatic recognition of anatomic features on cephalograms of preadolescent children. Angle Orthod. 2010; 80(5): 812-20. doi: 10.2319/092909-474.1.


Review

For citations:


Ayupova I.O., Kolsanov A.V., Popov N.V., Khamadeeva A.M., Davidiuk M.A., Kiryukov S.R., Ayupov O.N. Experimental analysis of the accuracy of cephalometric landmark identification in lateral teleroentgenograms. Medical Doctor and Information Technologies. 2025;(1):70-82. (In Russ.) https://doi.org/10.25881/18110193_2025_1_70

Views: 202


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1811-0193 (Print)
ISSN 2413-5208 (Online)