Information interaction model within the system for collecting medical statistics
https://doi.org/10.25881/18110193_2023_1_62
Abstract
Aim. To optimize the process of receiving and processing federal statistical observation forms.
Materials and methods. The MEDSTAT-WEB software, previously used by the Russian Research Institute of Health, was used as the basis. Innovative elements of third-party software were integrated into the process of providing primary statistical data.
Results. A functional has been developed that provides prompt online interaction between specialists of the Subjects of the Russian Federation and specialized experts of Russian Research Institute of Health. To confirm the legal significance of the provided information the reinforced qualified electronic signature was introduced. The video conferencing module was implemented by means of software from the Russian company TrueConf. The reporting status monitoring module was based on the Telegram messenger. The secure access module for remote form-taking experts of specialized national medical research centers was implemented on the basis of VPN system introduction into the closed segment of the Russian Research Institute of Health local network. A certification centre module has been integrated to perform information security tasks and to provide mechanisms for protecting data from unauthorized access and illegal data modification.
Conclusions. The re-engineering of the Federal Tax Service data transmission service contributes to optimizing the process of receiving and processing of electronic documents, increases the reliability of data and significantly increases the speed of information acquisition.
About the Authors
A. V. PolikarpovRussian Federation
PhD
Moscow
N. A. Golubev
Russian Federation
PhD
Moscow
I. V. Ryabkov
Russian Federation
PhD
Moscow
A. A. Lisnenko
Russian Federation
Moscow
D. G. Plaksitsky
Russian Federation
Moscow
M. V. Sankova
Russian Federation
Moscow
References
1. Pak AV, Fadeeva EA. Social’noekonomicheskie posledstviya pandemii COVID-19. Ekonomika i biznes: teoriya i praktika. 2021; 4-2: 58-60. (In Russ.)
2. Gorenko VI. Rossijskaya sistema zdravoohraneniya: problemy i vozmozhnosti po preodoleniyu pandemii. Skif. Voprosy studencheskoj nauki. 2020; 11(51): 451-455. (In Russ.)
3. Murashko MA. Pervaya pandemiya cifrovoj epohi: uroki dlya nacional’nogo zdravoohraneniya. Nacional’noe zdravoohranenie. 2020; 1(1): 4–8. (In Russ.)
4. Gusev AV. Perspektivy dal’nejshego razvitiya sluzhby medicinskoj statistiki putem perekhoda k upravleniyu na osnove dannyh. Vrach i informacionnye tekhnologii. 2018; 2: 6-22. (In Russ.)
5. Kashepov AV. Factors and economic consequences of the coronavirus pandemic. Vestnik Altaiskoi akademii ekonomiki i prava. 2021; 2: 38-45. (In Russ.) doi: 10.17513/vaael.1595.
6. Baldacci E, Buono D, Kapetanios G, Krische S, Marcellino M, Luigi MG, Papailias F. Big Data and Macroeconomic Nowcasting: from Data Access to Modelling. 2016 edition. Eurostat Statistical books. Luxembourg: Publications Office of the European Union.
7. Perspektivnaya model’ gosudarstvennoj statistiki v cifrovuyu epohu. Dokl. k XIX Apr. mezhdunar. nauch. konf. po problemam razvitiya ekonomiki i obshchestva, Moskva. 10-13 apr. 2018 g. M.: Izd. dom Vysshej shkoly ekonomiki, 2018. 35 р. (In Russ.)
8. Oksenoyt GK. Digital Agenda, Big Data and Official Statistics. Voprosy statistiki. 2018; 25(1): 3-16. (In Russ.)
9. Surinov AE. Digital Economy: Challenges for the Russian Statistics. Voprosy statistiki. 2018; 25(3): 3-14. (In Russ.)
10. FZ ot 30 dekabrya 2020 g. №500 «O vnesenii izmenenij v Federal’nyj zakon «Ob oficial’nom statisticheskom uchete i sisteme gosudarstvennoj statistiki v Rossijskoj Federacii» i stat’yu 8 Federal’nogo zakona «Ob osnovah gosudarstvennogo regulirovaniya torgovoj deyatel’nosti v Rossijskoj Federacii». (In Russ.)
11. Kobyakova OS, Polikarpov AV, Golubev NA, et al. Transformaciya medicinskoj statistiki v period pandemii novoj koronavirusnoj infekcii (COVID-19). Problemy social’noj gigieny, zdravoohraneniya i istorii mediciny. 2021; 29(6): 1439-1445. (In Russ.) doi: 10.32687/0869-866X-2021-29-6-1439-1445.
12. Kakorina EP, Polikarpov AV, Golubev NA, Ogryzko EV. Optimization of the system for processing statistical reporting «Medstat» in modern conditions. Menedzher zdravookhraneniya. 2015; 10: 31-40. (In Russ.)
13. Polikarpov AV, Golubev NA, Ogryzko EV. Optimization of the medical statistics service at various levels in modern conditions. Vrach i informatsionnye tekhnologii. 2015; 2: 72-80. (In Russ.)
14. Oreshkina MN, Bad’tna AV. Nauchnye aspekty informacionnogo obmena v sistemah elektronnogo dokumentooborota. EMANAGEMENT. 2020; 3(2): 55-62. (In Russ.)
15. Assonova ML. Analiz sredstv realizacii klient-servernogo prilozheniya i programmnyh sredstv, trebovaniya k arhitekture. Trudy Mezhdunarodnogo simpoziuma «Nadezhnost’ i Kachestvo». Penzenskij gosudarstvennyj universitet. T.2: 251-253. (In Russ.)
16. Belyakov KO, Meshcheryakov RV, Sar’yan VK, SHelupanov AA. Funkciya obespecheniya bezopasnosti Udostoveryayushchego centra golovnoj stancii informacionnyh upravlyayushchih sistem. Elektronnye sredstva i sistemy upravleniya. Materialy dokladov Mezhdunarodnoj nauchno-prakticheskoj konferencii. 2011; 1: 186-188. (In Russ.)
17. Prilozhenie Trueconf 8. Rukovodstvo pol’zovatelya. (In Russ.) https://docs.trueconf.com/manual/client/trueconf-client-ru.pdf.
18. Efremov PA, Makarov NV, Golikov AM. Issledovanie metodov i realizaciya kompleksnoj sistemy videokonferencij, ispol’zuyushchej zashchishchennye ip vpn kanaly. Elektronnye sredstva i sistemy upravleniya. Materialy dokladov Mezhdunarodnoj nauchno-prakticheskoj konferencii. 2011; 1: 3-7. (In Russ.)
19. Telegram Boty: Informaciya dlya razrabotchikov. (In Russ.) https://tlgrm.ru/docs/bots.
20. OpenVPN Cookbook 2nd Edition by Jan Just Keijser, Publisher: Packt Publishing (Feburary 2017).
21. Ustanovka centra sertifikacii (In Russ.) https://docs.microsoft.com/ru-ru/windows-server/networking/core-network-guide/cncg/server-certs/install-thecertification-authority.
22. https://swagger.io/specification/
23. Konovalov SV, Volokitin GA, Kul’shin RS. Razrabotka chat-bota dlya platformennogo reklamnogo kabineta. Elektronnye sredstva i sistemy upravleniya, materialy dokladov mezhdunarodnoj nauchnoprakticheskoj konferencii TUSUR. Tomsk. 2021; 1-2: 113-114. (In Russ.)
24. Asratyan RE, Lebedev VN, Orlov VL. Organizaciya informacionnogo vzaimodejstviya v raspredelennyh mul’tisetevyh informacionnyh sistemah. Upravlenie razvitiem krupnomasshtabnyh sistem MLSD’2010, 2010. — S.243-245. (In Russ.)
25. Sipani S, Verma K, Miller JA, Alerman-meza B. Designing a high-performance database engine for the ‘DB4XML’ native xml database system. Journal of systems and Software Elsevier Science Publishing Company, Inc. 2004; 60(1-2): 87-104.
26. Golubev NA, Polikarpov AV, Ogryzko EV, et al. Istoricheskie aspekty metodologii sbora i obrabotki mediko-statisticheskoj informacii v Rossijskoj Federacii. Social’nye aspekty zdorov’ya naseleniya. 2022; 68(5). (In Russ.) doi 10.21045/2071-50212022-68-5-13.
Review
For citations:
Polikarpov A.V., Golubev N.A., Ryabkov I.V., Lisnenko A.A., Plaksitsky D.G., Sankova M.V. Information interaction model within the system for collecting medical statistics. Medical Doctor and Information Technologies. 2023;(1):62-77. (In Russ.) https://doi.org/10.25881/18110193_2023_1_62